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ABSTRACT

Methods are presented whereby an Algol-like program , given togeth er with its
specif ications , can be documented automaticall y. The program is Incrementally annota ted
with invariant relat ionshi ps that hold between program var iables at Intermediate points In
the program and explain the actual workings of the program regardless of whether the
program is correct. Thus this documentation can be used for proving the correctness of
the program or may serve as an aid in the debugging of an Incorrect program.

The annotation techniques are formu lated as Hoare-like inference rules which derive
invar lants from the assignment statem ents , from the control structure of the program , or,
heuristically, from suggested invar lants. The applica tion of these rules Is demonstrated
by two exam ples which have run on an experimental imp lementat ion.
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Inference Rules for Program Annotation I

I. INTRODUCTION

A convenient form for expressing many facts about a program is a set of Invar iant
assertions (Invar lants , for short) which detail relationships between the different variables
manipulated by the program. invariant assertions play an important role in many aspects of
programming, Including: proving correctness and termination, proving incorrectness, guiding
debugging, analyzing efficiency and aiding in optimization.

Program annotation is the process of discovering these invariants. We are given an
Aigoi-like program along with an output specification stating the desired relationship among
the program variables upon termination, and an Input specification defining the set of Inputs
on which the program Is intended to operate. it is, however, not known whether or not the
program is correct and satisfies those specifications. Our task is to generate the invariant
assertions describing the workings of the program as is, independent of its correctness or
incorrectness.

In the following sections, we present a unified approach to program annotation, using
annotation rules — In the style of Hoare [1989) — to derive Invariants. Section Ii presents
an overview of our approach. It is foilowed by two detailed examples: the first (Section
lii) illustrates the basic techniques on a single-loo p program; the second (Section IV)
applies the techniques to a program with nested ioops and arrays. A catalog of annotation
rules is included in the Appendix.

We have implemented the strategIes described in this paper in QUSP (Wiiber [1976]),
which resides in an INTERLISP envIronment (Teitelman [1974]). The two examples
presented here are among those that have run successfully on our experimental system.
Three earlier annotation systems are:
• the system described in Elspas [1974], based mainly upon the solution of difference
equations;
• VISTA (German [1974], Germa n and Wegbreit (1975)), based upon the top-down
heuristics of Wegbrelt (1974]; and
• ADI (Tamir [1976]), an Interactive system based upon the methods of Katz and Manna 

____

(1976] and Katz [1976]. ~~~ Sec~~ ~
Our system, as described here, attempts to incorporate and expand upon those systems. ~ Sec~on o
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Inference Rules for Program Annotation 2

II. OVERVIEW

In this section, we first define some terminology and then, in an attempt to Impart the
flavor of the general approach, present samples of each type of annotation rule.

1. Notation and Terminology

Given a program with Its specifications, our goal is to document the program
automatically with invariants. if the program is correct with respect to the specifications,
we wouid like the Invarlants to provide sufficient Information to prove Its correctness; if
the program is Incorrect, we would like information helpful in determining what is wrong with
it. Three types of Invariants will play a role in our discussion:
• Global Invar iants are relations that hold at all places (I.e., labels) and at all times during
the execution of some program segment. We shall write

( a )  inP

to indicate that the relation a is a global invariant in the program segment P .
• Local invar iants are associated with specific points in the program, and hold for the
current values of the variables whenever control passes through the corresponding point.
Thus,

‘ a )  a t t

mea~. he relation a holds each time control is at label L .
• Candidates for invariant :, also associated with specific points, are relations that are
believed to be local invariants, but which have not yet been verified. Using question marks
to emphasize that these relations are Just candidates, we write

(? a ?) a t L .

Consider the following simple program, meant to compute the quotient q and
remainder r of the integer input values c and d :

-~~~~ —— - .- —- —. -—~~~— — -  -~~
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Inference Rules for Program Annotation 3

P,i begin comment I nteger division
B,: ( c € N , d € N ~ )
q -0
r : — c
loop L,: ( . . .  )

until r c d  -

q: . q+1
r :— r—d
repeat

£,: (? q c N , q� c!d , c/ d .c q+1 , r~~c—q•d ?)
•nd

where N Is the set of natural numbers, and N’ Is the set of positive integers. We use
the loop—until-r.put construct, to indicate that th. two loop-body assignments,
q :— q+1 and r :— r—d , are repeated until the exit test r < d is true for the first time.

This program will be used only to Illustrate various aspects of program annotation;
examples of full annotation are given in Sections ill and iV.

The invariant

{ c c N , d € N ’ )
attached to the begin label B,, is the input specification of the program defining the
class of “legal” inputs. it Indicates that whenever computation starts at B,, the variable

c is a natural number and d is a positive Integer. The input specification is assumed to
hold, regardless of whether the program Is correct or not. Since it Is a local invariant at
B, , we refer to it as

( c c N , d € N ’  } at B,

The candid ats

{? q € N , q~~cId , c/ d.c q+1 , rs c— q.d ?)

attached to the end label E, , Is the output specification of the program. It states that
the desired outcome of the program is that q be the largest integer that is not larger than

a. — 
p — _~~__  - -
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Inference Rules for Program Annotation 4

cid and r be the remainder. Since one cannot assume that the programmer has not
erred, Initially all programmer-supplied assertions — Including the program’s output
specification — are only candidates for invariants.

in order to verIfy that a candidate is indeed a local Invariant, we must show that
whenever control reaches the corresponding point, the candidate holds. Suppose that we
are given a candidate for a loop invariant

r = c—q.d ?) at L,, .

To prove that It is an Invariant , one must show that the relation holds at L0 when the loop
is first entered, and that once it holds at L, , it remains true each sUbsequent time control
returns to Li, . If we succeed, then we would write

( r —c—q . d ) at L, .

Furthermore, if r ~ c-q ’d holds whenever control is at L10 ,  then it will also hold whenever
control leaves the loop and reaches E, . In other words, r ‘c-q.d would also be en
Invariant at E,, and may be removed from the list of candidates at E, . In that case, we
would write

(7 q E N , q ~ cid , cid < q+I 7) and { r c—q.d ) at E, . - 
-
-

Global invarlants often express the range of variables. For example, since the
variable q is first initialized to zero and is subsequently Incremented by ones, it Is obvious
that the value of q is always a natural number. Thus we have the global Invariant

{ q € N  ) l n P ~

which relates to the program as a whole, and states that q e N throughout execution of
the program segment P, .

in this paper, we describe various annotation techniques. These techniques are
expressed as rules: the antecedents of each rule are usually annotated program
segments, containIng invarlants or candidate lnvariants, and the consequent is either an
invariant or a candidate. We list about forty such rules In the Appendix; they are
numbered <I), (2), etc. This list Is representative of the kinds of rules that may be
used for annotation; it is not, however, meant to be a complete list. Not only are these 
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Inference Rules for Program Annotation 6

rule. useful for automatic annotatIon, but they may also help clarify the relationshi ps
between program text and lnvarients for the human programmer.

We dIfferentiate between three types of rules: assignment rules, control rules and
heuristic rules.
• AssIgnment rules yield global Invariants based only upon the assignment statements of
the program.
• Control rules yield local invariants based upon the control structure of the program.
• Heuristic rules have candidates as their consequente. These candidates, though
promising, are not guaranteed to be invariants.
The assignment and control rules are algorithmic in the sense that they derive relations in
such a manner as to guarantee that they are invarianta. The heuristics are rules of plausible
inference, refiecting common programming practice.

2. AssIgnment Rules

Many of the algorithmIc rules depend only upon the assignment statements of the
program and not upon its control structure. - In other words, whether the assignments
appear within an iterative or recursive loop or on some branch of a condItional statement is
irrelevant. Since the location and order in which the assignments are executed does not
affect the validity of the rules, these rules yield global invarlants.

The various assignment rules relate to particular operators occurring in the assignment
statements of the program. Some of the rules for addition, for example, are: an addition
rule, which gives the range of a variable which Is updated by adding (or subtracting) a
constant; a set-addition rule for the case where the varlabie is added to another variable
whose range is already kivjwn; and an addition-relation rule which relates two variabies
that are always Incremented by similar expressions. Corresponding rules apply to other
operators. -

In dealing with sets, we find the following notation convenient: The set of elements
f ( s, ~~ 

. . .  ,s ,~) such that s s S , s, iS ,, ..., s , c S , — where f  is any sx preeslon
and m � 0— Is denoted by fis , , 8,, ... , 3,,) . For exam ple, since N denotes the set of

natural numbers , the set f iN  , N)  . a,+N ’a,” contains cii elements a,+m•a ,” such that m
and n are natural numbers.

- -
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Using this notation , we have the addition rule (1)

X :— a, I x+a , ~ x+a 2 ~ 
... in P

( x c a,+a ,’N+a 0.N + . . .  ) In P

where P is a program segment and the expressions a~ are of constant value within P
The antecedant

X :- a, ~ x+a , J x+a , ~ 
... in P

indicates that the only assignments to the variable x in P are x :~ a,, x :-
x :— x+a , , etc. The consequent

( x E a,+a ,.N+a ,’N + . . .  ) In P

is a global invariant indicating that x belongs to the set a,+a ,.N+a2.N + . . .  throughout
execution of P — but only from the point when x first receives a defined value In P
(After any execution of x :- a, , clearly x E a,+a ,’N+ a ,.N + . . .  with
x ~ a,+a ,’O+a ,O + . . .  , and If x g a ,,+a ,•m+a,’n+ . . .  for some m , n , ... before

executing x :- x+a , ,  then x . a,+a ,.(m+I) + a,.n+... after executIng the assignment.
Thus, m represents the number of executions of x :- x+a , sInce x :. a, was executed
last, n is the number of executions of x :- x+a, , etc.) From such an Invariant, more - 

-

specific properties may be derived. For example a bound on x may be derived using
methods of interval arIti ~metlc (see, e.g., Glbb [1961])’ Note that no restrictions are placed
on the order In which the assignments to x are executed, except that prior to the first
execution of x :- a,, , the invariant may not hold.

In our simple program P,, the assignments to the varIable q are

q : - 0 q: = q+1

So we can apply the addition rule, letting a, = 0 and a , = I , and obtain the global invariant
q € 0+l.N , I.e.,

( g € N  ) inP,.

The assignments to r in P , are
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Inference Rules for Pro gram Annotation 7

r : — c r : — r—d . 
-

Applying the same rule to them , letting a, . c and a, • -d , yields the Invariant

{ r€ c-d .N ) In P,

Given that d is positive, we may conclude that r ~c .

The set-addition rule is a more general form of the above addition rule, applicable to
nondetermlnistic assignments of the form x :cfiS) , where an arbitrary element of f iS)  is
assigned to x .  Note that an assignment x :- f (s) ,  where it is only known that s € S
may be viewed as the nondeterministic assignment x : €f iS) . The set-addition rule (6) Is

x :e S, I x+S, x+S, ... in P

( x € S,+Es ,+ES,+ . . .  ) In P

where ES denotes the set of sums s,+s,+ . . . +s,,, for (not necessarily dIstinct) addends
5, in S . If m = 0 , the sum is 0 ; if S contains the single element s , then ES s ’N
(This rule applies analogously to any associative and commutative operator “$“.) These
assignment rule. for global invar Iants are related to the weak interpretation method of
Sintzoff (1972) (see also W.gbreit (1975] and Harrison (1977]) which has been
Implemented by Scherils (1974].

In our program P , , the assignments to r were

r : — c r : — r—d

Since we are given that c a N and d a N ’ , we may view these as the nondeterminhetic
assignments

r : € N r : c r-N4

and by applying the set-ad4ltIon rule, we obtain the global invariant r € N-EN ’ . This
simplifies to

{ r € I )  i n P ,

where I is the set of all integer..

-- — - — — —p ~~~~~~~~_ —a---
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To relate different variables appearing In a program, we have an addition—relation rule
(11):

(x , y)  :— (a ,, , b,) I (x+ a ,’u , y+ b,.u) I (x+a ,’v , y+b,’v) I . . . in P

( a .(y—b,,) = b,’(x—a ,,) ) in P . 

-

where u , v , . . . ,  are arbitrary (not necessarily constant) expressions. The invariant
begins to hold when the multiple assignment (x , y) :- (a , , b,) has been executed for the
first time. [The Invariant a ,.(y-b ,) b,’(x-a ,) clearly holds when x a, and y b,,.
Assuming it holds before executing (x , y) :- (x+a ,.u , y+b,.u) , then after executing tie
assignment, both sIdes of the equality are Increased by a ’b ,’u , and the invariant r~tIhi
holds.) The multiple assignments in the antecedent of the rule, e.g. ,
(x , y) :— (x+a ,.u , y+b,.u) ,  may represent the cumulative effect of individual assignm ents

lying on a path between two labels, with the understanding that whenever x :- x.’a ,.u Is

executed, so is y :- y4-b,.u for the same value of the expression u .  In that case, the
invariant will not, in general, hold between the Individual assignments.

In our example, the assignments in the initialization path give us

(q , r) :. (O , c)

and for the loop-body path we have

(q , r)  :— (q+ I , r—d)

By a simple application of the addition-relation rule with a ,, = 0 , b,, c , a , = u = v = I , and

b, -d , we derive the invariant l•( r-c) = -d.(q-0 ) , which simplifies to

( r c—q.d ) in P0 .

We note that this addition-relation rule (as well as several other relation rules in the
Appendix) may be derived from the following general relation-rule schema:

(x , y) :— (a, , b,) I (r ~ (u®a ,) , y~ ( u®b,)) I (xO (v®a ,) , y~ (v®b,)) . . . in P

{ (a ,øb,) S (y ®a)  • ( x b ,) S(b,~a,) ) in P ,

_________________________
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Inference Rules fo r Program Annotation 9

where the operator 0 is commutative and associative, operator 0 satisfies
( aOb) ®c • (a0c) € ’b , and (aOb) ®c • (a 0c)0(b®c) . (These relation rules are related to the

approach in Caplain (1975].)

Before turning to the control rules we mention an additional useful techni que: the
augmentation of a program with counters. For example, by initializing a counter to zero
upon entering a loop and Incrementing It by one with each Iteration, the value of the
counter will indicate the number of times that the loop has been executed. Then relations
between the program variables and the counter can be found. (The variable q serves a
loop counter In the example ~!ogr3m P,.) By derIving upper/lower bounds on the counter
upon loop exit, the termination of the loop may be proved and time complexity analyzed.
Loop counters may also be used to discover relations between variables by solving
first-order difference equation. (see, e.g., Elapas (1974] and Katz and Manna (1976]).

3. Control Rules

Unlike the previous rules whIch completely Ignore the control structure of the program,
there are also control rules that derive imp ortant invarlants from the program structure.
(They are related to the verifIcation rules of Hoare (1969).) For example, the forward
loo~~exlt rule (31) , -

loop P’
( a )
until t

repeat
L”: 

-

( a , -‘t ) at L’
( a , t )  at t,”

reflects the fact that if a loop is exited and control I. at L” , then the exit test t must
have just held, while if the loop Is continued at L.’ , the exit test was false. Furthermore,
any relation a that held just prior to the test, also holds immediately after. The forward
loop-body rule <29),
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( a )
loop L:

P
{~~~)-epeat

{ a V f l )  a t L

states that for control to be at the head of a loop, at L , either the loop has just been
entered, or the loop body has been executed and the loop is being repeated. Therefore
the disjunction a V ~ of an invariant a known to hold just before the ioop with an
invariant ~ known to hold at the end of the loop body, must hold at L- .

Applying the first rule to the loop In the integer-dIvision program P0 , yields the
invariant r <d at E,, , and r ~ d at the head of the loop body:

q :- 0
r :— C

loop L,,:
until r < d
( r � d }
q :— q+1
r :— r—d
repeat

£,: { r d  )

To propagate lnvariants, such as r ~ d , past assignment statements, we have a
forward assignment rule < 21) ,

{ a(x ,y)  )
x -f ix  ,y)

( a~f ( x ,y) , y)  ) at L.

where f I. the Inverse of the function f in the first argument, I..., f ( ,f(x , y) , y) x .  In

- ——.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ - ~~~~~~~~~~~~~~~ ~~~~~~~ -~ p - -~~ —-~~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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our example, since the first loop-body assignment q :- q+l does not affect any variable
appearing in the invariant r � d , the InvarIant Is pushed forward unchanged. To propagate
r � d past the second assignment, r :- r-d , we replace r by the inverse of r-d , that is
r+d , yielding rid ~ d , or

( r � 0 } ,

at the end of the loop body.

The assign ment axiom (16) ,

X :- a
{ x a )

(the expression a may not contain x ), gives us the invariant

{ r c )

prior to entering the loop. Thus, by the forward loop- body rule (89) , we get the loop
invariant

( r = c V r ~~O ) at

SInce, by the Input specIfication 0 s c , the fIrst disjunct Is subsumed by the second, I.e., If
the first disjunct is true, then the second must also hold, and the InvarIant simplifies to

{ r ~~O ) a t L ,.

To generate Invarlants from conditional statements, we have a forward test rule <26>:

( a )
if t then L’~~; P ’  -

else L”: ;
fi

( a , t ) at L’
( a , -.t )  at t”

That is, for the then branch to be taken t must be true, while for the else branch to be
taken it must be false~ And anything that held before the test, holds after.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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To Illustrate the control rules, consider the following single-loop, elngie-oondltlonal,
program schema:

P5x begin
Z : — C

loop L~s ( . . .  )
until t (x)
z : .f (z)
if s (z)  then z :— g(z) else z :— k(z)  fi
repeat

end .

We shall assume that the inverse functions f ,  f and h~ are available whenever
required by the rules.

The assignment axiom <18> , when applied to the initial assignment z :- c , yields the
invariant

{ z c )  
- 

-

before the loop. The forward loop-exit rule <31) generates the invariant -.t(z) at the head
of the loop body, immedIately after the until clause, and then the forward assignment rule
<21> gives -4(f(z)) preceding the conditional. So far we have the loop body

until t(z)
z :.f iz)
( - ‘t(f (z) )  )
if s (z) thn z :. g (z) eli. z :. h (z) fi

The forward test rule <26) propagates that invariant forward and adds 5(z) at the head of
the then clause of the conditional, and - ‘s (z) at the head of the else clause:

if 5 (z) then ( -.t(f (z) )  A s(z) }; z :— g(z)

else { -.t(f (z)) A -.5 (z) ); z :— h(z)
fi .

By pushing -.t(f (z) )  and s(z) through the then -branch assignment z :— g (z) , and
-.:(f iz) )  and - .s (z) through the else -branch assignment z :- h(z) , we get

~

—--— - .— ----- - _p_ ~~~~~~~~~~~~~~~~~~~ —~~~—- —- -—-— 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ________ -- --
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Inference Rules for Pro gram Annotation - 13

if s (z)  then z :— g (z) ; ( -ut (f (g (z)) )  A s (g iz)) )
eli. z :— h (z) ; ( -4 (f (h (z)))  A - ‘s(h (z)) }
f i .

After a conditional statement, we know that one of the two branches must have been
taken. This Is expressed by the forward branch rule <27)

if t then P’ i ( a )
else P” ; ( f l }
fi

a t L .

Thus, by disjoinlng the invariant. from the two different paths, one gets

{ (— ‘t(f (g (z))) A s (giz)) ] V (-‘e(f (hiz))) A - ‘s (ir (z))) }

after the conditional, at the end of the loop body. -

The forward loop-body rule (29) expressed the fact that If control Is at the head of a
loop, either the loop-InItIalIzatIon invariant or the loop-body Invariant must hold. Applying
this rule to our schema

( z z c )
loop L5s (  ... )

until t(z)
z :.f (z)
if s(z) then z :. g(z) else z :. h (z) fi

{ (- t (f (g (x)))  A s (g (z)) ] V (- ‘t (f (h (z)))  A — ‘s (hiz))] )
repeat ,

-

we derive the loop invariant

( z . c V (- t (f (g (z)))  A s (g (z)) ]  V (- ‘t(f (h iz))) A -.s (hiz)) ] ) at L5

_ _ _ _ _ _  

H 

-~~~~~~~~-~~~~~~~~~~~~ .-~~---
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This loop invariant embodies two facts about the control structure of this schema:
• exit lemma: Whenever control Is at 1)i , either the loop has just been entered, or the
loop-exit test was false the last tIme around the loop. That I.,

{ z c V -.t(~ (g (z))) V -t(f (A (z))) ) at L5

The first disjunct is the result of the initialization path; the second states that the exit
test was false for the value of z when L,.~ was last visIted, assuming control came via
the then path of the conditional; the third disjunct says the same f or the case when
control came via the else path.
• test lemma: Whenever control Is at L5 , either the loop has just been entered , or the
conditional test was true the last time around and the then path was taken, or the test
was false and the else path was taken. That Is,

( z c V s (g (z) )  V —s(h (z))  } at L*

The following for all rule (36) Ii valuable for programs with universally-quantified
output specifIcation. Given a loop invariant a(x) at L , containing the Integer variable (or
expression) x and no other variables, check If x is monotonicaily Increasing by one. If it 

-Is, then we have as a ioop invariant at L , that a still holds for all intermediate values
lying between the initial and current values. That Is

( x = a )
loop L: ( a (x)  )

P
( x~~x1 +1 )
repeat

{? (Vi € I)( a s 1 s x) a (l) 9) at L

where a is an Integer expression with a constant value In P and XL Is the value of x
when last at L. (This rule Is similar to the universal-quantification technique for arrays In
Katz and Manna (1973].) The rule may be broadened to apply when x Is increasing by an
amount other than 1 , or for a decreasing x .  Note that any loop counter wIll satisfy the
conditions on x .

As a simple example, consider the loop 

~~~~ ---~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ —p-~~~~ -~~~~~~~~~ --- 

-

_ _ _ _ _ _ _ _  _ _ _ _ _



Inference Rules for Program Annotation 16

i : — O
loop t:

until f(i)
l : — i+1
repeat

E s .

We clearly have I • 0 upon entering the loop, and I • I~+1 at the end of the loop body.
By the exit lemma, we have -

( ~ g 0 V —t (i—J ) ) at L

and generalizatIon of this invariant yields (Vl)( O ~ I ~ 
I)( l • 0 V -~t (l—I)) at L .  SImplifyIng,

we get

( (Vfl(0 s I < f l- ’t(l ) ) at L. . 
- -

ThIs invariant may be pushed forward to E ,  where we also have the invariant t(1) .
Together they Imply

{ i ~ ~zin t (l )  ) at £

4. Heuristic Rules

In contrast with the above rules which are algorithmic In the sense that they derive
relations that are guaranteed to be Invarlants, there is another class of rules, heuristic
r ides, that can only suggest candidates for lnvariants. These candidates must be verified.
(Since we have not Implemented a theorem prover, our system suggests candidates, but
does not verify them.]

As an example, consider the following disjunction heuristic (36)

if t then P’ ; 4~ a ) -

else P” ; ( P )
fi

L:
{ ?a , 0?)  a t L .

S
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Since we know that a holds If the then path P’ Is taken, while P holds li the •lse
path P ” Is taken, clearly their disjunction a V P holds at L In either case (that was
expressed in the forward branch rule (27>). However, since In constructing a program, a
conditional statement Is often used to achieve the same relation in alternative cases, it is
plausible that a (or, by the same token, P ) may hold true for both the then and else
paths.

Wegbre it (1974] and Katz and Manna [1976) have suggested a more general form of
this heuristic <39>:

{ a V fl) a t L ,
{ ? a , 0 ? )  a t L .

However, as they remark, this heuristic should not be applied indiscriminantly to any
disjunctive invariant. We would not, for example, want to replace all occurrences of an
invariant x � 0 with the candidates x > 0 and x ~ 0 .  Special cases , such as the above
disjunction heuristic , are needed to indicate where the strategy Is relatively likely to be
profitable.

As mentioned earlIer, the output specification and user-supplied assertions are the
Initial set of candidates. Candidates are propagated over assignment and conditional
statements using the same control rules as for invariants, and the top-down heurIstic (38) ,

( ‘ V  )
loop P’

unti l t

repeat -

L”z {? ‘V 7)

(? ‘V ?) at t’

may be used to push a candidate backwards into a loop, Though I ~ ‘V would be a
sufficiently strong loop invarIant at L’ to establish ‘V at L” upon loop exit , the
heuristic suggests a stronger candidate, ‘V Itself , at L i .  Since a necessary condition for
‘V to be an invariant is that it hold upon entrance to the loop, the antecedent of the rule

requires the invariant ‘V before the loop, If some P , rather than ‘V , is known at that
point, then for the heuristic to be applied, P must Imply ‘V
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Returning to our integer-divisIon example, the top-down heuristic suggests that of the
candidates

(7 q e N . q s c / d , cld < q+1 , r ac-q ’d ?) at

those which hold upon entering the loop — when q • 0 and r ~ c — are also candidates at
L.,,. They are

(7 q € N , q s cid , r c—q ’d ?) at L0

The third candidate ~t E~, cid c q+1 , does not necessarily hold for q • 0 .

Each candidate must be checked for invariance: it must hold for the loop-initialization
path and must be maintained true around the loop. Of the three candidates at L , , the

first, q € N , and last, r a c-q’d , have already been shown to be globai invarIsnts. To
prove that the second, q S cid , is a loop InvarIant at L~, , we first try to show that it Is

true when the loop is entered, I.e., that

0 � c/d

The truth of this condition follows from the input specIfications. Then we try to show that
if q~ cid is true at L, , and assuming that the loop Is not exited, then it holds when
control returns to L, , I.e.,

q�c l d A r �d  q+1~~c!d

This condition, however, does not hold. Nevertheless, we can show that q � cid is an
invariant by using other invariants: We have seen why r � 0 and r ~ c-q ’d are loop
invariants at L., . Since substituting c—q.d for r In r � 0 yields c-q.d � 0 , it follows that
q ~ cid Is also an Invariant at L 0 . Thus, while an attempt to directiy verify the candIdate

q � cid failed, once we have established that r ~ 0 and r ~ c-q.d are Invariants, we can
also show that q � cid is an invariant.

Indeed, in general there may be Insufficient Information to prove that a candIdate Is
invariant when it Is first suggested, end only when other invariant. are subsequently
discovered does It become possible to verify the candidate. Therefore, every candidate

• should be retained until all invariants and candidates have t~een generated. Unproved
candidates are also used by the heuristics to generate addItIonal candidates. For
example, the top-down heuristic uses the as yet unproved candidate ‘P at L” to generate

the candidate loop-invariant ‘P at 1.’ . 
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Note that a candidate Invariant must sometimes be replaced by a stronger candidate
in order to prove invariance. This Is analogous to other forms of proof by inductIon, where
it is often necessary to strengthen the desired theorem for a proof to carry through. The
reason Is that by strengthening the theorem to be proved, we are at the same time
strengthening the hypothesis that Is used in the inductive step. We could not, for

example, directly prove that the relation Cr � d) V (r c-q’d ) is a loop invarIant (that is
the necessary condition for r • c-q.d to hold after the loop), since this candidate is not
preserved by the loop, I s., -

[ r � d V r c-q.d ] A r ~ d ~ ( r—d � d V r—d ‘c—(q+I) .d ]

does not hold. On the other hand, we can prove that the stronger relation r — c-q.d is an
invariant , since we have a stronger hypothesis on the left-hand side of the implication;
that is,

r = c—q.d A r ~ d ~ r-d • c— (q+l) ’d

does hold. Clearly , once we establish that r s c-g ’d is an invariant, it follows that
Cr ~ d)  V ( r — c—q.d) also Is.

Various specific methods of strengthening candidates have been discussed in the
literature (Wegbreit (1974], Katz and Manna (1976], Moriconi (1974] and others); they
are closely related to methods of “top~~~~n

0 structured programming. Related techniques
are used by Greif and Waldinger (1974) and Suzuki and Ishihata [1977]. Also the
candidates that Misra [1976] and Morris and Wegbreit (1977] derive, using the -

subgoal—induction method of verIfication, fall into this class.

In each of the following two sections, we shall demonstrate how a nontrivial program
can be annotated using the rules In the Appendix. These examples are deliberately taken
from previously published papers on program annotation In order to demonstrate tne power
of our approach.

_
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III . EXAMPLE: Real-Division Program

ConsIder the following program P , purporting to approximate the quotient c/ d of two
real numbers c and d , where 0 � C d .  Upon termination, the variable q •houid be no

greater than the exact quotient, and the difference between q and the quotient must be
less than a given positIve tolerance e .  in other words, the input specIfication is

0 � c < d  A 0 < .

and the output specification Is

q �cld  A cld < q +e

The program is

P1s begin comment rea l divIsion
B1: { O s c c d , 0 < . )

- 
- qt . Oi qq :— Oi r : — 1~ rr :.d

loop L . : (  . . .  ) -

until r S e
if qq+rr � c then •j a q+ri qq - qq+rr f l
r :— r12; rr :— rrl2
repeat

£,: (7 q s c(d , c/d c q.s.e 7)
end

and our goal is to find loop Invariants at 1., In order to verIty the output candidates at
E~. In our presentation of the annotation of this program, we first apply the assignment
rules and then the control rules combined with a heuristic rule.

1. Assignment Rules

As a first step we attempt to derive sImple invarlanta by IgnorIng the control structure
of th, program, and considering only the assignment statements. This wIll yield global
lnvarlants that hold throughout execution.



Inference Rules for Program Annotation 20

We first look for range inva rlants by cons Idering all assignment , to each variable. For
example, since the assignments to r are

r:.l r: . r12

we can apply the multiplication rids (2)

X : —  a , J x . a  i n P

( x € a 0.a1~ ) in P .

Taking r for x , 1 for a, and 1/2 for a1 , we derive the global invarIant

( r € 1 / 2 ” '  ) in P , . (1)

In other words, r = 1/ 2” for some natural number n .  From this it Is possible to derive
lower and upper bounds on r , i.e., 0 <r  ~ 1.

Similarly, applying the multiplication rule to the assignments to rr

rr :— d rr a r r/2

yields

{ rr € d12” ) in P1 . (2)

Since we are given that d> 0 , It follows that 0 < rr S d.

The assignments to q are

q: - 0 q: — qf r

Since we know (1) r € 1/2 ” , these assignments may be interpreted as the
nondeterministic assignments

q :€ 0 q:€ q+112”

Using the set-addition ruts (6>

X : €  30 I x ~3, inP

{ x c S 0.~~3~ ) In P , 

~~~ - -~~~~ --~~~~~~~~—— --~~~~~—
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we conclude

{ q € EJI2N ) in P 1 . (3) -]
This Invariant states that q is a finite sum of elements of the form 1/2” , where n is
some natural number. Since for any two such elements, one is a multiple of the other, it
follows that the sum is of the form m/ 2 ” , where m , n € N .

From (2) rr € d/ 2”' and the assignments

qq :— 0 qq :— qq+rr

we get by the same set-addition rule -

( qq € d•El/2 ” ) In P 1 - (4)

The above four invariants give the range of each of the four program variables. Now
we take up relations between pairs of variables by considering their respective
assignments. Consider, first, the variables r and rr Their assignments are

(r ,rr) :. (l ,d) (r , rr) :— fr/ 2 , rr/ 2 )

Each tIme one Is halved, so is the other; therefore, the proportion between the - Initial
values of r and rr is maintained throughout loop e~acutlon. This Is an instance of the
multIplIcat ion—relation rule (12>

(x , y) :— (a, , b,) J (X.Ua, , y.~gbi) In P -

{ x lhu.b,a 6J’.i1 ) in ~

yielding r t sd • 11.rr which simplifies to

( rr z d•r ) in P1 - (5)

The assignments to q and qq are

(q , qq) :— (0 , 0) (g , qq) :— (q+ r . qq+rr )

Using (5) rr d r  to substitute for rr In the assignment qq := qq+rr , we have
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(q . q q)  — ( 0 , 0) (q , qq) :. (q+ r , qg+d .r)

which is an instance of the a4dition-rsla~on rule (11)

(x ,y) :— (a, b,) I (x+a 1.u ,y+b1.u) in P
{ a 1.(y—b) ’b,’(x—a ,) ) In P -

Thus we have the global Invariant l ’(qq-O) a d4q-O) , I.e., 
-

{ qq = d.q ) in P . (6)

In all, we have established the following global Invariants:

{ r € 112”' , rr € dI 2~”' , q € Zl,2N ,
qq € d•E112” , rr = d.r , qq = d.q } in p,

2. Cont rol and Heuristi c Rules

So far we have derived global Invariants from the assignment statements, Ignoring the
control structure of the program. We turn now to local invariants extracted from the
program structure.

By applying the assignment axiom <18)

X : - a
{ x a )

to the four assignments at the beginning of the program, we get the local invariant

{ (q , q q , r , r r) = ( 0 , 0 , 1 , d ) )

just prior to the loop. The loop axiom (20),

A

- - —- 
- - -  —-~~~~ --a - - -— - a ~—- —— ‘~~~~-—-—~- ~~~~ --—- —— - -- - - -
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loop P’
until t
4: -.‘ )

repeat

yieids r > e at the head of the loop body. Thus far, we have the annotated program
segment

( (q , qq , r , r r) a ( 0 ,0 , 1 ,d ) )

loop L , : {  . ..  )
until r � e
4: r > e  }
if qq+rr S c then q :- g+r; qq :- qq+rr fi
r :— r/ 2; rr :— rr/2
repeat .

The conditional statement of the loop,

if qq+rr S c then q a q+r ; qg :. qq+rr fi

may be considered as having an empty else branch, i.e.,

if qq+rr S c then q :— q+r; qq . qq+rr else fi

So we apply the forward test rule <26>,

( a )
if t then L’: ;

else L”s
fi

( a , t ) at !..’
4: a , -4 ) at L.”

obtaining, thereby, 

~~- - -~~~~~~~~~~~~ -~~~~~~~~~~~ -~~~~~~~~ 
—- —

-~~~~~~~~-~~~ -~~~-——-—-~~~~~~~~~~~~~~
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if qq+rr � c then 4: r >  e , qq+rr � c ); q :— q+r; qq :— qq+rr
else 4: r > e , c< qq+r r )
fi -

Using the forward assignment rule (21>,

4: a (u , y)  )
X :- U

4: a (x , y)  ) at L

— where x does not appear in a(l . y) , the assignments of the then branch transform the
invariant qq+rr s c Into qq � c and leave r >  e unchanged. We obtain

if qq+rr S c then q :— q+r; qq :— qq+rr; 4: r >  e , qq s c )
else 4: r e , c< qq+rr )
f i .

We may now apply the forward branch rule <27)

if t the n P’ ; { a )
else P ” ; 4: ~ 

)
fi

L:
{ a V ~~~) a t L .

This rule disjoins the two possIble outcomes Of the condItIonal, and we obtain the InvarIant

4: (r efl qq s c) V ( r > e A c c q q ÷ r r )

The invariant simplifies to just

4: r > e  ) ,

since r > e appears in both disjuncts while qq S c V c c qq+r r Is a tautology (if the first -

disjunct is false, then qq > c , and since ,i Is positive, qq+rr > c is implied).

However, the disjunction heur istic

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~~
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if t then P’ ; { a )
else P ” ; 4: D )
fi

L:
{ ? a , ~~?) at L.

suggests that each of the two lnvariants, qq S c and c qq+rr , may Itself be an invariant.
So we have

4: r > e  ) and 4:? q q s c , c~~qq+rr 7)

following the conditional and preceding the assignments

r :— r / 2; rr :— rr/2

By further application of the forward assignment rule to the one invariant and the two
candidates, we get

4: 2 • r>e  ) and 4:? q q s c , c-c qq+2.rr 7)

at the end of the loop. So far we have the annotated loop:

4: (q , gq , r , rr) a (0 , 0 ,1 , d) )
loop L.~: { . . .  )

until r s e
if gq+r r S c then q . q+r i qg . qq+rr fi
r :— r/ 2; rr a r r/2 

- 

-

4: 2 ’r~~s ) 4:? çq s c , c < q q +2.rr
repeat -

FInally, by applying the forward loop-bod, rule (29> ,

I
I

- ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ _— —-
~~~~~~~~~~~~~~~~~~~ 
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( a )
loop L:

P
( 0 )
repeat

( a V O )  at !.. ,

to the invariant at the end of the loop body, we derive the loop Invariant

4: (q , qg , r , rr) u (0 ,0 , 1 , d)  V 2 ’r>e ) at L~, -

In order to simplify the presentation slightly, we shall use instead the weaker

4: r I V 2•r > e ) at L~ . ( 7)

By a similar application of the forward loop-body rule to the two candidates at the end of the
loop body, we get the candidates -

4:? (q , qq , r , r r) • (0 , 0 , 1, d) V qq�c 7) at

and

4:? (q , q q , r , r r) (0 , 0 , l ,d)  V c c  qq+2.rr 7) at L~
Both candidates may be simplified, since their first disjunct is subsumed by their second,
leaving

4:? qq c , c c qq+2.rr ?} at L 1 -

These two candidates can indeed be proved to be invariants: The first candidate, qq � c ,
derived from the initialization and then paths, is unaffected by the else path which
leaves the value of qq unchanged. Similarly, the other candidate, c < qq+2.rr , derived
from the initialIzation and else paths, is maintained true by the then path. So we have
the loop invariants

4: qqs c , c qq+2 ’rr ) at L~ . (8)

Since there are no assignments between the loop and the end of the program, all the

L — -  - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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loop lnvarlants may be pushed forward unchanged, and hold upon termination. With the
loop exit test r � e , the output invariants include

4: rr ~ d•r , qq = d.q , ( r 1  V 2.r >e) ,
q q s c , c<qq+2.rr , r s e  ) at - (9)

Note that we did not make any use of the candidates

4:? q cid , c/ d < q+e 7) at

suggested by the output specification, as no new Invariants would be derived ,

Though these invarlants do imply q s cid as specified, they do not imply cid c q+e . In
fact our program as given Is incorrect. For a discussion of how these invariants may be
used to guide the debugging of the program, see Dershowitz and Manna (1977).

3. Loop Counters

By Introducing an imaginary loop counter n — InItialized to 0 upon entering the loop
• and incremented by I with each Iteration — we may derive rele tionships between the

program variables and the number of iterations.

The extended program (annotated with some of the invariants we have already found)
is:

P1: begin comment real division
B1: 4: O s c d , 0 o  )
q : — 0; qq :— 0; r : — 1; rr :.d
n - 0
loop L1 : 4: rr d r , qq • d.q , (r~1 V 2 ’r> e) , qq � c , c < qq+2.rr )

until r S s
if qq+rr � C then q :— q+r; qq :— gq+ rr fi
r :— r/ 2 ; rr :.
n: - n+1
repeat -

E 1 s 4: rr d ’r , qg a d1, (r.1 V 2.r> e) , qq S c , c < qq+2.rr , r s e )
end

A



Inference Rules for Program Annotation 28

Obviously,

( n € N  } i n P 1 . (10)

For the variables r and n , we have the assignments

(r , n) ;— (1 , 0) (r , n) :— (r12 , n+ I)

and we can apply the linear-relat ion rule <14>

(x ,y ) :a (a , , b,) I (a 1.x+a, , y+ b~) in P

4: (x.(a ,_1) + a,)b,.a,b, a [a ,.(a ,—l) +a,] b,.a? ) in P . 
-

With this rule we get the global invariant

4: [r .(1/2—1) +0] ’.(112) ° • (11(112~1 ) +0~ .(1/2Y’ ) in ~D 

-

which simplifies to yield

4: r = 112 ” ) In P - (11)

Applying the same rule to

(yr , n) (d , 0) (iv , n ) —  (rr I 2 . n+1)

we deduce

4: rr d/2” ) in P 1 . (12)

With these loop-counter Invarlants, the total number of loop Iterations as a function of
the input values may be determined. Using (11), we can substitute 1/ 2” for r In the

output invarIant (9), r � v A (r a J V 2 ’, - e )  , and get

1/2” s e A (1/2 ” • I V 2/2 ” > e)

Taking the logarIthm ( • is positive), we have the lower bound

—log2e s n

and upper bound

n = 0  V n <-l og2e+1

on the number of loop iterations n .  Note that by finding an upper bound on the number of 

—— -- -~~~~~~~~~~~ - -~ .- -~~- -—~~——~~~~ —~~-—---~~ —-~~~~~~~ --- -- --— ~ - — -
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iterations, we have actually proved that the loop terminates.

CombinIng both bounds gives (assuming n-. 0 )

—log2e S ft < —log,e+1 , -

or, since n is an Integer (10), It is equal to the one integer lying between its lower and
upper bound

n = f—log 2e~ —Ijog 2eJ

Thus we have the output Invariant

{ n ~ 0 V n . -[log2eJ } at E - (13)

Since n Is the number of times the loop was executed before termination, we have
derived the desired expression for the time complexIty of the loop.

- - — —--— -~--- ---- ~~~~~~~~~~~~~~~ 
- -
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—
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IV. EXAMPLE: Selection-Sor t Program

The previous example contained only one loop and dealt with simple variables. As a
more challenging example, we annotate an array-manipulation program containing nested
loops. The program is intended to sort the array 4(0:n) of ns.1 elements 4(0) , 4(1) ,

4(n) in ascending sequence. The output specification can therefore be expresse d
as

( W)( O � I < n) (A[ l] � 4(1+1]) A p erm(4[0: n] , A, (0:n])

where perm (A[ 0:n] , 4,[ 0:n]) Indicates that 4(0:n) is a permutation of the array
4,[0:n] , and 4, Is the value of the array 4 when the program is first enter ed. The

program Is:

P,s begin comment sel~cIlon sort
B:: 4: n € N  }
1 : —  0
loop L.,: {  . . .

until I a n
P :  begin

j  :— 1+1; m :— 4(1]; k :— I
loop L,s ( . . . )

until j > n
If 4(j) c m then m :- 4(j); k :—j ft

j  :.j+ I 
-repeat

4(h) :— 4(1]; 4(1] :— m; I :— 1+1
end

repeat
E,: 4:? (W)W I n)(A(lJ s 4(1+1]) , pe rm(4[0 :n] , 4,fOs n]) 7)
end .

1. Assignment Rules -

We first try to determine the range of the program variables. Th. variables In the 

- ______ _________
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program P, are 1 , j ,  k , ,~t , and 4 ;  the Inner loop (the program segment P, ) sets the

variables j ,  k and in , and leaves I and A unchanged.

The assignments to I are

i : — 0 i : — I+1

which by the addition rule <1>

x : -  aj x+a 1 i n P

4: x € a ,+a 1 ’N ) in P

give the global invariant

( I c N )  lnP, . (1)

Since the program P2 contains the labels L,, L, and £2 , this relation holds at all three
points.

The assignments to j  are

j : . i+1 j : —j + l

Since we know i € N , we may substitute N for I to obtain the nondeterminlstic
assignments

j  :E N-i- i j  :€j+ l

and by the set-addition rule < 6) we get j  £ N+1+ EI , which simplifies to

4: J E N , l � j  ) in P~ - (2)

(Recall that these global invariants only hold after j  :. 1+1 Is executed for the first time.)
Since within P, the value of I I. unchan ged, It may be regarded as a constant. We can
therefore apply the addition rule to the assignments to J ,  j  :. 1+1 and j  . j+ 1 , obtaining

(je i+I+N } In P,

and consequently

{ i c j )  i n P , . (3)

- ---- -~~~-~~~~ -- -~~~~~ 
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The assignments to k are

k : — i 1 : —f .

Using (1) and (2) to substitute N for I and j  ,we have -

h:e N

and from the simple set-union rule (4)

x:€ SJS ,  InP

4: x € S ,U S 1 ) in P

it follows that

( h € N  ) In P 2 . (4)

In P , , ,  as we have seen, I Is constant and j  a i+1+N , so we substitute I+1+N for j  In
the assignments to I to obtain

I :E l  I :c l+1-s-N -

By the same set-union rule, we have that k belongs to the union of I and I+1+N .
Therefore I € i+N , and - 

-

( I s k  ) inP,. (5)

FInally, for m we have the assignments

~n : — A[ i] m : — A(j] -

Using (1) i £ N and (2) j  £ N to substitute N for I and j  , we get

in :E 4 ( N )  in :E 4(N) -

Thus, by the set-union rule, we obtain

4: in 4 (N ]  ) In P, - (0)

In the following subsections, we shall apply the control rules and heuristics first to the
inner loop and then to the outer loop.
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2, Control Rules - Inn .; Loop

At any point in a program, the disjunction of what is known from the paths leading to
that point is an invariant. So we can obtain loop Invariants at label L, , by considerIng the
three paths leading to L, : the initialization path from L, to L, , the loop-body path from
Lq to L, via the then branch of the conditional, and the loop-body path via the eli.

branch of the conditional.

From the initialization path, we have upon entering the inner loop

i < n A j — i + 1  A m A[ 1] A k = i  . ( 7)

The conjunct i < n  derives from the negation of the outer-loop exit test (using the loop
axiom <20>); the other three conjuncts are obtained from the three assignments along the
initialization path (by the assignment axiom (18)).

At the head of the inner-loop body, we have the invariant

j  � n A I = l~ A A = 4L A j  =J L A I 1,, A m

where XL ,  for some variable x and label L , denotes the value of x when control was
last at L - The first conjunct is the negation of the exit test and the other conjuncts,
which are generated at L, using the value axiom (33>,

4: x = x , ) at

have been pushed passed the exIt test unchanged (thIs is an application of the forward
loop—exit rule (31> to the inner loop). After executing the assignments in the then
branch of the conditional, we know

J s n  A m 4(j ) A I = J  A 1 1 L, A 4 = 4L1 
A i =JL , -

The second and third conjuncts derive from the assignments (by <18)); all the other
conjunct. have been prop agated forward (by the forward test rule (26) and forward
ass ignment rule (21)).

After the (empty ) else branch of the conditional , we have 

—--~~~~~~~~~~~~~~~ -—--- -
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j  s n A m ~ 4(J) A I A 4 s A - j  
~ iL.1 

A I 
~L1 

A in in -

The second conjunct is the negation the conditional test (by the conditional axiom (19>).
Since we must have traversed either the then or else branch, we know that after the
conditional

( j � n  A n s A ( J ]  A 1sf A i~~l~ A ~ f J ~, 
)

V ( j ~~n A m~~4(j] A l . I ~ A A S A L

A j  iL2 
A I 1L A in m~ )

(this is the forward branch rule (27)). Thus, at the end of the loop body, after incrementing
j  by 1 , we have (by (21))

( j— i s n A in A (j—l] A I =j —1 A I = A 4 = A j —I =j ,  )

V ( f— i � n A m S A[j —J] A I I~ A 4 A~ (8)

A f- i  sf  A I 1L1 
A m ‘5 L3 ~ -

Furthermore, if a relation a holds upon entering a loop, and we know that the loop
body either does not change the values of the variables in a , or reachievus a for the
new values of the -variables, then a is a loop invariant. This is the protected—invar iant rule
(34>

4: a (x)
loop 1..:

P
4: a ( x ) Vx •x
repeat

4: a (x)  ) at L -

By substituting I for f — i in the first disjunct of (8). we may derive I s n and m 4[I] -

Thus, at the end of the loop body we know (I s n A in 4(1)) V
(A = A L A k = kL A m = mL ) - This invariant Is of the form a (x )Vx ~~x~ , taking a(x) to

2 2 I

be I s n A in z 4(1] and x to be the variables 4 , 1 and in - The first dIsjunct
Indicates that the then path achieves a(r) ; the second disjunct states that the else

path leaves 4 , 1 and in unchanged, From invariant (7) preceding the loop, we can

derive that Initially I s n and in s 4(1] . So we have 

--:~~~~~~~~~~~~~~
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4: 1 n , in . 4(1] ) at 1., - (9)

SimIlarly, by (8) we have ~ i~ for both loop-body paths , and by (7) we have I c n upon

entering the loop. Taking a (I ) to be I c n , we get

( i <n  ) at L, - (10)

DIsjoinlng invariant (7) of the initialization path and (8) from the loop-body path, we

get the followIng Inner-loop InvarIant (by the forward loop-body rule (29)):

4: ( i < n  A j s i + i  A m a A ( I ]  A 1.1
V ( i-I S n A m = 4ff-i] A I j-i )
V ( i—I s n A in 5 4ff—i] ) ) at 1.,, - . (11)

(The conjuncts refering to the previous value of a variable at L2 have been removed.)

Now we extract the “common denominator” of the disjuncts in (11) arising from the
different paths. The relation f-i  s n appears in the second two disjunct. and Is implied
by the two conjunct. I n and j  • 1+1 of the first disjunct, so we get the Invariant

4: j — i �n  ) at L, - (12)

in the first disjunct of (11) we have j  = 1+1 A in s 4(1] , in the second we have
m = .4(j— 1] , while in the third we have in s 4ff- i]  , thus for all paths

4: in 4ff— i]  ) at L, - (13)

3. Generalization Heuristic - Inner Loop

The following generali zatIon heuristIc (37> is partIcularly valuable for loops involvIng
arrays: 

~~—--~~~~ ~-- ~~~~~~~~ —~~--~~-~ —~~~~~~~~~~~~~~~~~~~~~~ -—-- --~~
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{ x ’a )
loop L: 4: a (x , y)  ) 

-

{ X Z X L+1 )
repeat

4:? ( Vf l (a s I s x) a (l .y)  ?)  at L. -

This heuristic is similar to the fora il rule (35>, but only sugg ests a candidate, sInce the
variable y may change value in P .  in our case, reconsider the inner-loop invarIant (13)

m) : m s 4f f - I ]  at Lq - lnit ialiy j  Is (+1 , and at the end of the loop body j  iL~ ’’
so, as an invariant candidate, we try

4:? (Vl)( i+ 1 s I sj ) (m  � 4(1—1)) ?) at L.,

which we shall abbreviate as in ~ A[ i:j -1) . Checking the candidate for the then and
else paths, determines that it is In fact an invariant, and we have for the inner loop

4: in s 4(i :j—i] )  at L, - (14)

So far we have derived the following inner-loop invarients

4: l s n , m. 4 ( I) , l n , j—l s n , ms d [ i s j — 1 ]  } at L, -

We turn now to consider the outer loop.

4. Control Rules - Outer Loop

Using the forward loop-exit rule (31) , the invariants at L, may be propagated past
the exit test j >  n , obtaining

4: I s n , m =A [ k ) , i < n , j — 1 � n , m �A (i :j— 1] , j > n  )
just prior to the assignments

4(1 ] :— 4(1]; 4(i) :— in; i :— 1+1 

-- ----~~~~ - -~~~~~~~~~~~ ---— —-- —- ~~~~——- -—- - —
~~~~~~~~~~
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Propagating these Invarlants past the assignments, we get the following Invarlants at the
end of the outer-loop body: 

-

4: k s n , I S n , m~~4(Isj—l] , ,n a A(i—1] , j — l s n  } - (15)

-
~~ 

- The invariant I s n iJ propagated unchanged. The invariant I < n becomes 1-i c n after
executing i :. 1+1 (by the forward assignment rule (21)), whIch ii equivalent to I s n
(sInce both I and n are integers). The Invariant in s A(i:j - i] still holds after assigning
to 4(k) , since It also held for 4(1] ; after the assignment to 4(1] , it becomes
in s 4[ i+I:j- I] (by the forward array-assi gnment rule (23)) ; af ter  incrementing 1 , it

becomes in ~ 4(i:j- 1) . The assignment 4(1] :- in generates the invariant m = 4(i) (by
the assignment axiom (1 8) ) ,  whIch becomes m = 411-i] after incrementing I - Finally, the
invariant. j— i s n and f >  n simplIfy to f —i ~ n (sInce (2) f E N) .

Clearly upon entering the outer loop (by <18>)

1= 0  -

Thus, by the forward loop-body rule (29) , we have the outer-loop invariant

( 1 = 0  V ( k � n A I � n A m � A ( i : j — i] A m A(i—i] Aj —i n) ) at L2

with the following two corollaries:

4: I = 0 V A(i—1]~ A(irn] ) at 12 
- 

(16)

(the second disjunct foliows from in � 41sf-i] , in 4(1-1) and f - i  n ), and -

4: i s n  ) at L2 (17)

(since i = 0 is subsumed by I s n for n £ N) .  If we use the forward loop-exit rule (31)
to push i s n past the exit test I � n and out of the loop, we get the output invariant
i � n A i � n  at E,,or,

4: 1 n  ) at - (18)

6. Heuristics - Outer Loop

We use the generalizat ion heurIstic (37) to generalize (16) for the counter I , where
a (l , 4) is I • 0 V 4(1—1] s 4(lsn] . SInce S is initIally 0 , this yields the candidate

- — - - -  ~~~~~~~~~ - 

j
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4:? (Vl)(0 s I s O(l • 0 V 4(1—1) s A(I: n] ) ?) at 1, -

This is equivalent to

4:? ( Vl) (0 � I < i) ( A (l )  s A(l+ 1:n]) ?} at L~
and states, in effect , that the array elements 4(0 s i-I] are sorted and that they are all
smaller than the array elements A[ 1: n) . It can be shown that it does Indeed remain
Invariant, so we have the outer-loop invariant

4: ( Vl) (0 s I < i) ( A (l]  s A(l+1 :n] ) ) at L~ - (19)

This may be pushed out of the loop to E 2 , and with (18), i.e., I n at E~ , implies the first

conjunct of the output specification,

(Vl)( 0 � 1 ~ n)( 4[l ] � 4(1+1)) -

The top- down heuristic (38> suggests that the output specification
perm (A[ 0:n) , A~,[0: n) )  , which is obviously true initially, is itself a candidate at L~ . Since

It can be shown that the only two assignments to A have the effect of exchanging the
values of 4(1] and 4(1] , we have the Invariant

4: pe rm (A(0:n) , A0(0:n)) ) at L2 - (20)

The program, annotated with some of the more Important loop and Output assertions ,
is: 

_____  -- _______



- -

Inference Rules for Program Annotation 39

P,s begin comment selection sort
B,i ( n € N }
I : . 0
loop L~s 4: 1 £ N , I s n , (Vl)( 0 ~ 1 < I)( 4 (l ] s 4(lrn] ) ,

perm(A(Os n] , 4[ Orn) )  )
until 1~~n
P,;begin

j : . i-i-i; m:. A(I);  1 : — I
loop L~: 4: 1 , j , k € N , I < n , I < j ~~n+i , I~~k~~n ,

in 4(1] , in s 4[1zJ —1] )
until j > n
if 4ff] c in then in :~ 4ff]; I -f fi

j : —f + I
repeat

4(1] :— 4(1] ; 4(1] :. in; S — 1+1
end

repeat
E2: 4: 1 = n , (Vl)( 0 s I < 0(4(1] ~ A(I+i:n]) , perm (4[ 0:n] , 4(0:n]) )
end .

To determine the time complexity of this program, we add three counters: one for the outer
loop, one for the inner loop, and a third to sum the total number of Inner-loop executions.
Using the annotation rules, one can easily show that the outer loop is Iterated n times,
that the Inner loop is executed n-I times for each outer-loop iteratIon, and that the total
number of inner-loop executions Is n•(n+1W2 -

I
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APPENDIX

in this appendix we present a catalog of annotation rules. We use the following
conventions:

P , P’ and P ” denote program segments;
L , L’ and L” are statement labels;
a , ~~~~ , Y and a denote predicates;
x , y and z are variables;
a , a~ and b~ are expressions which are constant In the given program segment;
u and v are arbitrary expressions;
N denotes the set of natural numbers and I the set of all Integers.

1. Assignment Rules

• Range rules

< 1> addition rule
X :— a, x-i-a , x+a 2 ... in P

{ x € a,+a ,.N+a 2•N + . . .  ) In P

<2) multiplication rule
x :— a0 x•a , I x•a~ I . . - in P

{ x € ~~~~~~~~~~~~ } in P

<3> ex/ ionentiation rule
x : -  a , I x °i l x °i l  . . .  inP

a ~~ N.( x € a , , 2 } i n P

U
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• Set assignment rules
x :€ S refers to an assignment x :- u where It is known that u a 3 ;
ES is the closure of the set S under +
113 is the closure of the set S under • ;

<4> set-union rule
x : E  S, I S , 1 S , I ... h i P

( x c 3 ,U S ,U S~U . . .  ) in P

(6)  sot-additIon rule
x : €  Sj x+3, I x+Sj ... l nP

x € S +ES +ES1+ - . - } In P

<6> set—multiplIcation rule
x :€ 

~ 
x.S, x ’32 I ... in P

{ x € s ,.fls 1.fls ,. . . - ) In P

< 7) set-ox p onentlat ion ru le
x : —  S, 1 x 3’i 1 x 3,I ... In?
{ x € s ,113,”115,... } in p

• Counter relation rules
n is an Integer variable;

is an integer;
v(n) is an expression containing the one variable n .

<8> addition-counter rule
(x , n ) — (a 0 , n,) (x+v (n) , n+1) In P

x = a,+Zj’~.J v(l) ) in a°

(9> multiplication—counter rule
(x , n) — (a ,, n,) (x.v(n) , n+ 1) in P

* 

{ x a,•I1j”..~;’v(l ) ) in P
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— < 10> exfronentiation-counter rule
(x , n ) —  (a, , n,) I (x v ( )  

, n+i) in P

{ x a,1~~~~ (l) ) •In P

• Basic relation rules

( 1  1)  addition—relation rule
(x , y)  :— (a , , b,) I (x+a ,.u , ,+b,.u) (x+a ,ev ,y+ b,.v) . - . in P
{ a,’(y—b ,) b,’(x—a ,) ) in P

< 12) multiplication—relatIon rule
( c  , y)  . (a , b,) I (xu° , yiiibi) I (x ’v° y.vt’i) I . . . In P

~~~~~ ~~~~~ ) in P

< 13> expon entiation-relatlon rule
(x , y)  :— (a , , b,) I (x~z,U 

, yb1U) ~~~~~~~ ~~~~ . . . in P

{ log(x~0g(t~u ) .jog(b,y!0g(a,) log(a,)bog(b u ) .log(y)bog(a,) ) in p

• Assorted relation rul.a

(14)  lInear—relation rule
(x ,y)  :— (a ,, b,) I (a ,.x+a 2 , b .y+b,) in P

( [x4a ,_j ) ÷a 2 /’~,a,b~. f a ,’(a ,—i) + a,Y’,.a? ) in P when b, .1
( (x.(a ,_ I) +a 1~0g( b,) .(b,.(b _,) +bj10f (a ,) .

[a ,.(a ,_I) +a ,YOtG1) .(y.(b ,_,) +b,] 10((a .) ) in P otherwise

(1 6)  quadratic rule
(x , y) :— (a, , 6,) I (x+a, , yib,.x+bj in P
{ (y—bj .2.a,2 (x-a,) .(b,’(x—a ,—a,)+2.a,.b,) } In P —

- _ - ~~~~~~~~~~-~~~~
_ 

- —— _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(16> factorI al rule
(x , ~g) :— (a ,’a , .6,) I (x+a~ .,.r41) In P
a,,a,c N

( y.a,l b,.(a,.b,~ ”~s~~s.(x!a,)I ) in P

(17> multi pll calion-exfoonentlatlOf l rule

(x , y) :— (a, , b,) I ~~~~ , ,b,t)~ (x.a,’~ , 
~61~ I .. In P

{ ~~~~~~~~~ (log(,) I1og(b,) )l0~(~)  } in P

I. Control Rule.

• Control axioms

(18)  assignment axiom
x : - a
{ x . a )

(19> condItional axiom
if t then { I ) ;

elas { — t  } ;P”
fi

(20> loop axiom
loop P’

until t
i: -~tP,,
repeat

{ t )

—

~

—- -

~ 

-
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• Assignment control rules
A is an array variable;

the array function assign (A ,y • x) yields A , with z replacing A&] .

(21 > fo rward assignment rule
{ co(x , y)  ) {? ‘Y(x ,y)  ?) —

x :.f (x  ,y )  x : .f (x ,y)

{ a(f (x ,y)  ,y)  ) at L. {? ‘Y(f (x .y)  , y)  7) at L
- - w~aere f  is the inverse of the function f  In the first argument, to., f (f (x ,y)  .y) = x .

( a (u ,y)  ) (7 Y(u ,y)  7)
x : - u
L: -

( a(x .y)  ) at L. (7 ‘Y (x ,y )  7) at
where x does not appear In e(1 , y) or ?(l , y ) .

(22 > backward assignment rule -

X : - u
{ ~~ y)  ) {? .3 (x , y)  7)
( P(u ,y)  } at L (7 8(u ,y) 7) at

~ 23> f orward array-assignment rule
{ a(A , z)  ) (7 ‘Y(A ,z) 7)
A[~) :=flAfy] , z)  AEy]  : —f (A Ey ) , z)

L:

( a (ass ign(A ,y  ,f (A ( y )  , z))  , z) } at L (7 ) ‘(a.ssign (A ,y ,f (A ( y )  , z))  • z)  7) at
where f (f (A (y ]  . z) . z)  = A[y] .

<24> backward array-assignment rule
L: L:
A[y] :. v A[y) :. v
( 5(A , z) ) (? Ô(A , z) 7)
{ D (assig n (A ,y  , v) , z)  ) at L (7 6(ass ign (A , y , v) , z)  ?) at L . 

-

f 
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r ~~~~ 

- 

- 

~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~~~~~~~~

-—
~~~~~~~~~~~~~~~~~~

Inference Rules for Program AnnotatIon 47

• Conditional control rules

<26> fo rward test rule
( a )
if t then LI : ; P ’ if t then II: ; P ’

else L.”: ; P ” else L”: ; P ”
fi fi

{ a , t ) at L’ (7 ‘V 7) at L’ and

( a , -4 ) at LI’

(26)  backward test rule
1..:

if t then ( a ) ; P’ if t then (7 ‘V 7) ; P ’
else ( 0 ) ; P” else (7 8 7) ; F ”
fi fi

( t~~ a , -q~~8 ) at L (7 t~~ ’Y , —t~~ 1 7) at L

(27> f orward branch rule
if t then P’ ; ( a if t then P ’ ; (? ‘V 7)

else P” ; ( 0 ) else P” ; (7 1 7)
fi fi

• L: Li
( a V O )  at L, { ‘ ? Y V 8 ? )  a t L

F <28) backward branch rule
if t then P ’ ; L’* if t then P’ ; lI~

els ~~“ I L.”i else P” ; L” i
fi fi

( 0 )  (7 8 ?)
{ ~ ) at L.’ and L” (7 1 7) at L’ and 1,”

• Loop control rules

<29) forward loop-body rule
( a )  (? ‘Y ?)

• loop Li loop L:
P P
( 0 )  (7 1 ?)
repeat repeat

{ a v P ) a t L (‘? ‘Y V I ? ) at L
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(30> backward loop-body rule
L’: I.’:
loo p(f l )  loop (? l?)

P P
L”: L”:
repeat rep, at 

-

{ 5 ) at 1.,’ and L” (7 1 7) at ii and L”

< 31) forward loop-exit rule 
-

loop P’ loop P’
( a )  (7 ’? ?)
until I until t

‘ L’: L’:
P’1

repeat repeat
1.”:

{ a , -‘t ) at L~’ (7 ‘V 7) at L’ and L”
- 

- ( a , t )  et L”

(32)  backward loop-exit rule
loop P’ loop P’

Li
until g until t
( a )  (7 7 ?)
P,1 Pp ,
repeat repeat

( 0 )  (7 8 ?)

( — ~~Da , t~~ D )  • t L  {? - ‘t~~ ’Y , t~~8 ? )  at L,

• Value rules
denotes the value of the varlab4s x when control was last at label I,.

(33) value axiom
( x . x 1 }  a t L

An invariant containing r 1 may not be pushed Over the label L - 

-- - ~~~~~~~~~ - - ~~~ ~~~~~~ -- - _ - - - -



- 

~— - —-n

Inference Rules f or Program Annotation 49

(34) pr otected-InvarIant rule
( a (x) )
loop Li

P
( a (x) Vx x~ )
repeat

( a (x) )  a t L
where x Is the only variable in a .

(36> fora ll rule
( x a , x € I )
loop L: { a(x) )

P
{ x s x L+ l }
repeat -

( (Vl e I)( a �l � x) a (l )  ) at L J
where x is the only varIable in a

3. Xeuzlati c Rule.

(36)  disjunction heuristic
if t then P’ ; ( a )

else P” ; ( D )
fi

Li
(? a .  0 ? )  at L.

(37) generalization heuristic
( x a , x € I )  - 

-

loop Li ( a(x ,y) )
P
{ x x ~+ 1 )
repeat

(7 (Vl £ I) (a ~ I ~ x) a (l ,,) 7) at L

‘ 1

_ _
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<38) sop-down heuristic
( ‘ V  )
loop p’

until t
P”
repeat

‘1 7)
(? ‘V ?) a t L  

-

• Dangerous heuristics - To be applied with caution

(39> or heuristic (applied in conjunction with the forward branch rule)
( a V O )  a tt
( ? a , 0 ? )  a t L

<40) strengthenin g heuristic (applied in conjunction with the top-down heuristic)
( a (x) ) and (? ?(x) 7) at L
(7 (Vx)(g(x)~~’V (x)) ?) at L

(41> transitivity heuristic (applied in conjunction with the top-down heuristic)
{ uRv ) and (9 uRw ?) at I., —

(9 vR w Vv w 7) at L
where R is a transitive relation.

_ _  ~~~-
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